Real Convergence In The New Member States: Myth or Reality?

Andrea Ingianni* Vaclav Zdarek+

6th EEFS Annual Meeting, 2007
Outline

1 Motivation
 - Research objectives
 - Background literature

2 Contribution
 - Main Results
 - Future Directions
Motivation

1. Research objectives
2. Background literature

Contribution

2. Main Results
3. Future Directions

Ingianni and Zdarek

Real convergence in the EU8.
Research question.

"Will countries with different starting levels of GDP per capita converge in the long run?"

In the specific case: "Were new members converging during the enlargement process?"
"Will countries with different starting levels of GDP per capita converge in the long run?"

In the specific case: "Were new members converging during the enlargement process?"
"Will countries with different starting levels of GDP per capita converge in the long run?"

In the specific case: "Were new members converging during the enlargement process?"
Countries under investigation (EU8): Estonia (EE), Lithuania (LT), Latvia (LV), Czech Republic (CZ), Slovakia (SK), Poland (PL), Hungary (HU), Slovenia (SL).

Data: Eurostat New Chronos and Statistical Annex to the EU economy, GDP per capita PPS and Euros at 1995, 2000 constant prices, annual or quarterly frequencies.
The EU enlargement.

- **Countries** under investigation (EU8): Estonia (EE), Lithuania (LT), Latvia (LV), Czech Republic (CZ), Slovakia (SK), Poland (PL), Hungary (HU), Slovenia (SL).

- **Data**: Eurostat New Chronos and Statistical Annex to the EU economy, GDP per capita PPS and Euros at 1995,2000 constant prices, annual or quarterly frequencies.
Outline

1 Motivation
 • Research objectives
 • Background literature

2 Contribution
 • Main Results
 • Future Directions

Ingianni and Zdarek
Real convergence in the EU8.
Theoretical Background.

- **Economic theory**: Neoclassical model [10, 11] with a standard Cobb-Douglas production function (CES function, neutral technological progress),

\[Y_t = A_t \Delta(K_t^\alpha \Delta L_t^\beta), \quad \alpha, \beta \in (0, 1), \quad \alpha + \beta = 1 \]

(1)

where the process towards the steady state can be described as:

\[\frac{\dot{k}}{k} = sk^\alpha - (n + \omega + \delta) \]

with \(k \)- capital per unit of labour, \(n \)- growth rate of population, \(\omega \)- rate of exogenous technical progress, \(\delta \)- rate of capital depreciation and \(s \)- saving rate, dot means increase of given variable.

- **Empirical investigations**: Beta / sigma and time-series convergence.

Ingianni and Zdarek Real convergence in the EU8.
Empirical convergence.
I. Beta convergence

The standard [1] regression:

\[T^{-1} \ln \left(\frac{Y_{T,i}}{Y_{0,i}} \right) = \alpha + \beta \ln(Y_{0,i}) + \varepsilon_{T,i} \] (2)

from which \(\beta_S = \frac{1-e^{-\beta T}}{T} \) (speed of convergence), is estimated in the alternative form\(^1\) (e.g. [9]):

\[\frac{\dot{y}}{y} = \beta [\ln(y^*) - \ln(y)] \]

\(^1\) a Taylor expansion of (1) in \(\ln y \) about steady state \(y^* \), assuming balanced growth equilibrium: \(\dot{k}/k = \dot{y}/y \)
Empirical convergence.
1. Sigma convergence

Given a set of N countries, we call σ_t^2 the variance of GDP per capita of the aggregate at time t:

$$\sigma_t^2 = N^{-1} \sum_{i=1}^{N} [\ln (y_{i,t}) - \bar{y}_t]^2$$

where $i \in [1, N]$, $t \in [1, T]$ and $\bar{y}_t = N^{-1} \sum_{i=1}^{N} \ln (y_{i,t})$.

Sigma-convergence occurs when: $\sigma_{t+n}^2 < \sigma_t^2$ with $n > 0$.
Empirical convergence.
II. Unit-roots and Cointegration - Fixed u.r.

According to [3] when the process:

\[g_t = \rho g_{t-1} + \varepsilon_t \]

where \(g_t = \ln(y_{i,t}) - \ln(y_{j,t}) \), has a unit root (\(\rho = 1 \)), it is a non-stationary random walk and it should be interpreted as output divergence between countries \(i \) and \(j \).

More generally, for \(i = 1, 2, \ldots, N \), consider the (unrestricted) VAR of order \(p \):

\[
\Delta y_t = \Pi y_{t-1} + \sum_{j=1}^{p-1} \Gamma_j \Delta y_{t-j} + Bx_t + \epsilon_t
\]

[2] conclude for convergence when \(r(\Pi) = \tau = N - 1 \).

[4] and [7, 6] are used for testing the two conditions.
Given the process ([5]):

\[g_t = a_t g_{t-1} + \varepsilon_t \]

where \(a_t \) is a stationary series such as \(a_t \sim iid(1, w^2) \) and \(\varepsilon_t \sim iid(0, \sigma^2) \). The null is set to the pure unit-root (\(H_0 : w^2 = 0 \)), the alternative to the STUR (\(H_1 : w^2 > 0 \)) and the test statistic is calculated [8] as:

\[
\hat{Z}_T = \frac{\sum_{t=q+3}^{T} \left(\sum_{p=q+2}^{t-1} \hat{\varepsilon}_p \right)^2 \left(\hat{\varepsilon}_t - \hat{\sigma}^2 \right)}{\hat{k}\hat{\sigma}^2 \sqrt{T^3}}
\]

where: \(\hat{\varepsilon}_t = \Delta x_t - \hat{\alpha} - \hat{\gamma}t - \sum_{n=1}^{q} \hat{\beta}_n \Delta x_{t-n} \), \(\hat{\sigma}^2 = T^{-1} \sum_{t=1}^{T} \hat{\varepsilon}_t^2 \)

and \(k^2 = T^{-1} \sum_{t=1}^{T} \left(\hat{\varepsilon}_t - \hat{\sigma}^2 \right) \).
Empirical convergence
III. Hypothesis summary

Positive evidence of convergence is found when:

1. **Beta** convergence: $\beta < 0$.
2. **Sigma** convergence2: $\sigma_t < \sigma_{t-1}$.
3. **Fixed unit roots** (ADF): reject a unit root ($\rho = 1$). [3]
4. **Cointegration**: $N - 1$ cointegrating relations among N countries. [2]
5. **Stochastic unit-roots** (STUR): reject a pure unit-root ($w^2 = 0$) against a stochastic root. [12]

Galton’s fallacy: $\sigma_t < \sigma_{t-1} \Rightarrow \beta < 0$ but $\beta < 0 \not\Rightarrow \sigma_t < \sigma_{t-1}$
Outline

1. Motivation
 - Research objectives
 - Background literature

2. Contribution
 - Main Results
 - Future Directions
Beta and Sigma Convergence.

Beta convergence

![Fig. I - Euros](image)

<table>
<thead>
<tr>
<th>Year</th>
<th>(\beta) (pps)</th>
<th>(\beta) (eur)</th>
<th>(\beta_S) (pps)</th>
<th>(\beta_S) (eur)</th>
<th>Conv.?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995-06</td>
<td>-0.046</td>
<td>-0.0331</td>
<td>4.11</td>
<td>2.28</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>(-0.0107)</td>
<td>(-0.0124)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995-00</td>
<td>-0.038</td>
<td>-0.02</td>
<td>3.43</td>
<td>1.89</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>(-0.109)</td>
<td>(-0.0123)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001-06</td>
<td>-0.0493</td>
<td>-0.0373</td>
<td>4.32</td>
<td>3.36</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>(-0.0163)</td>
<td>(-0.0182)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Fig. II - PPS](image)

<table>
<thead>
<tr>
<th>Year</th>
<th>(\beta) (pps)</th>
<th>(\beta) (eur)</th>
<th>(\beta_S) (pps)</th>
<th>(\beta_S) (eur)</th>
<th>Conv.?</th>
</tr>
</thead>
</table>
| Two Regions (EU8+EU15)
| 1995-06 | -0.0024 | -0.0967 | 2.27 | 6.04 | yes |
| | (...) | (...) | | | |
| 1995-00 | -0.0142 | -0.057 | 1.37 | 4.9 | yes |
| | (...) | (...) | | | |
| 2001-06 | -0.0421 | -0.2074 | 3.75 | 13.47 | yes |

Ingianni and Zdarek
Real convergence in the EU8.
Beta and Sigma Convergence.

Sigma convergence.

Main Results

<table>
<thead>
<tr>
<th>Year</th>
<th>β_j (pps)</th>
<th>β_j (eur)</th>
<th>σ-conv.?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995-06</td>
<td>-0.0125</td>
<td>-0.0118</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>(-0.0006)</td>
<td>(-0.0006)</td>
<td></td>
</tr>
<tr>
<td>1995-00</td>
<td>-0.0134</td>
<td>-0.0081</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>(-0.0025)</td>
<td>(-0.0024)</td>
<td></td>
</tr>
<tr>
<td>2001-06</td>
<td>-0.0141</td>
<td>-0.0122</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>(-0.0009)</td>
<td>(-0.0005)</td>
<td></td>
</tr>
</tbody>
</table>

Two Regions (EU8+EU15)

<table>
<thead>
<tr>
<th>Year</th>
<th>β_j (pps)</th>
<th>β_j (eur)</th>
<th>σ-conv.?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995-06</td>
<td>-0.014</td>
<td>-0.1426</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>(-0.0012)</td>
<td>(-0.0012)</td>
<td></td>
</tr>
<tr>
<td>1995-00</td>
<td>-0.0083</td>
<td>-0.0093</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>(-0.0019)</td>
<td>(-0.0016)</td>
<td></td>
</tr>
<tr>
<td>2001-06</td>
<td>-0.0221</td>
<td>-0.00236</td>
<td>yes</td>
</tr>
</tbody>
</table>

Source: New Chronos, 2007. Note: $\sigma_{j,t} = \alpha_j + \beta_j t + \varepsilon_{j,t}$, $j = (EU8), (EU8+EU15)$.
Time-series Convergence

Time-series Summary and Leybourne test

<table>
<thead>
<tr>
<th></th>
<th>hu</th>
<th>sl</th>
<th>ee</th>
<th>lt</th>
<th>lv</th>
<th>sk</th>
<th>pl</th>
<th>cz</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Y***</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y***</td>
</tr>
<tr>
<td>STUR</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Cointegration</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Overall</td>
<td>Y</td>
<td>Y-</td>
<td>Y-</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>lt</th>
<th>lv</th>
<th>ee</th>
<th>cz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-stat</td>
<td>-0.021092</td>
<td>0.025811</td>
<td>0.224499*</td>
<td>0.011203</td>
</tr>
<tr>
<td>STUR?</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>sk</th>
<th>pl</th>
<th>hu</th>
<th>sl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-stat</td>
<td>0.113485</td>
<td>0.011203</td>
<td>0.25118*</td>
<td>0.287285*</td>
</tr>
<tr>
<td>STUR?</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Real convergence in the EU8.
Outline

1 Motivation
 - Research objectives
 - Background literature

2 Contribution
 - Main Results
 - Future Directions

Ingianni and Zdarek
Real convergence in the EU8.
Future Directions

- Non linearities.
- Breaks.
- Sample size (time is limited, low frequencies).
- Seasonalities (seasonal unit roots).
Conclusions

- The EU enlargement is an attempt of promoting growth and convergence through integration. Our results show that, although positive signs are visible, it is difficult to have a clear answer about the achievement of this target.
- The evidence from aggregated beta and sigma analysis is pro-convergence but mixed from disaggregated time-series.
- A series of technical difficulties overshadow “reality” adding to the “myth”.

Ingianni and Zdarek
Real convergence in the EU8.
R. J. Barro.
Economic growth in a cross section of nations.

Convergence in international output.

Are U.S. regional incomes converging? A time series analysis.
D. Dickey and W. Fuller.
Distribution of the estimators for autoregressive time series with a unit root.

C. W. J. Granger and N. R. Swanson.
An introduction to stochastic unit-root processes.

S. Johansen.
Estimation and hypothesis testing of cointegration vectors in gaussian vector autoregressive models.
S. Johansen.
A small sample correction for the test of cointegrating rank in the vector autoregressive model.

S. J. Leybourne, B. P. M. McCabe, and A. R. Tremayne.
Can economic time series be differenced to stationarity?

Z. Matkowski and M. Prochniak.
Real Economic Convergence in the EU Accession Countries.
R. M. Solow.

T. W. Swan.

R. Yau and C. J. Hung.